Advanced Nanotechnologies and Microtechnologies


RG 1-11 Multiscale Modelling and Measurements of Physical Properties (Roman Gröger)


High temperature plasticity and magnetic properties of high and medium entropy alloys 

Solid solutions mixing four and more metals in an equiatomic proportion represent a brand new class of materials exhibiting many unique properties [1]. Particularly striking examples are a combination of high strength and high ductility of CoCrFeMnNi alloy at low temperatures [2] or a possibility to “program” magnetic hysteresis of the same alloy by external field applied during cooling to a low temperature ferromagnetic regime [3]. The original idea linking the thermodynamic stability to high configurational entropy of these materials does not seem to work. In spite of this, systems like the CoCrFeMnNi and some others are in the state of solid solution at the standard conditions. A satisfactory explanation based on thermodynamic principles has not yet been found. Similarly, a self-consistent theory which would provide explanation of the observed magnetic phenomena is missing. Furthermore, many alloys of the class were still not investigated with respect to their high temperature plasticity and related evolution of dislocation structures. Therefore, the topic proposed for the PhD study offers a wide range of possibilities to perform ground braking studies both in the theoretical as well as experimental fields. A subject of the thesis particularly focuses on two topical issues related to the high temperature strength and magnetic properties of the new class of solid solutions with the cubic lattices: 1) microstructural basis of the viscous glide controlled creep [4] and 2) physical background related to the vertical shift of magnetic hysteresis curves [3]. The work assumes an application of various experimental and theoretical methods like micro and nano structural electron microscopy studies or numerical modelling of magnetic structures within a framework of Ising-Heisenberg approximation. The hosting institution will be the Institute of Physics of Materials [http://www.ipminfra.cz/]. I envisage multiple short term attachments at the partner institutions in Germany (Ruhr University Bochum) and in US (Oak Ridge National Laboratory, Tennessee).

 Multiscale Modelling and Measurements of Physical Properties

SupervisorAntonín Dlouhý, prof. RNDr,. CSc. 


Experimental study and modelling of prismatic dislocation loops

The prismatic dislocation loops have Burgers vector perpendicular to the loop plane and they are created by irradiation or by plastic deformation. These loops can be easily seen in transmission electron microscope (TEM) and can be produced by Ga+ ions in focused ion beam (FIB). The objective of this project is to study interactions of small prismatic loops with each other and with free surfaces of the TEM foil both experimentally and by atomistic modeling using empirical potentials.

 Multiscale Modelling and Measurements of Physical Properties

SupervisorFikar Jan, Mgr., Ph.D.


Mechanism of the small creep strains of the metallic materials at low stresses and transition to the plastic strain - model development and experimental study

Creep strains measured at very low applied stresses are, by their properties, very different from those measured at higher stresses during the conventional creep tests [1]. The stress and strain dependencies of the creep rate are much weaker and the strain is mostly anelastic.  Deformation mechanisms controlling these strains are not known, mainly because there are no observable signatures of the small strains in the microstructure. The small strain kinetics is clearly related to the internal stresses build-up. At present, only one simplified micromechanical model exists which is based on the dislocation segments bowing. This model combines the viscous glide and climb of dislocations [2], but its predictions are only relevant for very small strains, not explaining the transition to the normal plastic creep regime. The main topic of the thesis is the development of the complex dislocation model which will provide better insight into a nature of creep strains which accumulate at very low stresses. The model should also address the transition into the normal plastic creep regime. The solution will be based on the simplified model mentioned above and will include realistic description of the interactions between dislocations and solute atoms.  Recently developed discrete dislocation dynamics method [3] will facilitate a statistical description of dislocation segments reaching a critical stress condition. Experimental study of the low-stress creep of the selected metallic materials will be important part of the work. The materials having exceptional creep behaviour observed during the conventional creep tests will be targeted. The Institute of Physics of materials AS CR [http://www.ipm.cz] , which is fully equipped  with all the required facilities, will be the workplace.

 Multiscale Modelling and Measurements of Physical Properties

Supervisor: Kloc Luboš, RNDr., CSc.


Mechanisms of grain boundary mediated plasticity in hcp metals

Due to their low density hcp metals (such as Ti and Mg) are important structural materials for aerospace and automotive applications. Their physical and mechanical properties are often determined by behaviour of grain boundaries, particularly, by interface-mediated plastic processes. For instance, formation and migration of the twin/matrix interfaces are important during fatigue and fracture of α-Ti alloys.Twinning is also important mechanism of plastic deformation in magnesium alloys. Interphaseboundaries play significant role in TiAl alloys.Clarification of the interfaces role in mechanical behaviour is important for the design, processing and application of Ti and Mg alloys. The present project focuses on study of the key processes during plastic deformation using atomic scale simulations. The aim is tounderstand the atomistic mechanisms of interface-mediated plasticity in hcp materials such as titanium- and magnesium-based alloys.

► Multiscale Modelling and Measurements of Physical Properties

Supervisor:  Andriy Ostapovets, Ph.D.


RG 1-02 Smart Nanodevices (Jaromír Hubálek)


Study of electrical properties of very thin dielectric stacks grown by Atomic Layer Deposition (ALD) method

Very thin dielectric layers have been used in microelectronics for many years. Recently, it has encountered material limits where the tunneling of electrons in the gates of MOS transistors has begun to exceed an acceptable limit. From a nanotechnology point of view, we talk about 2D nanomaterials. The quality of dielectrics is assessed not only by min. thickness, breakthrough voltage and large dielectric constants, but also by the size of leakage currents. These streams can be the result of a number of phenomena such as direct and Fowler-Nordheim tunneling, Frenkel-Pool current and Schottky emission, or another yet not described phenomenon. The ALD method allows conformational growth of materials thinner than 1 nm. The combination of different materials to stacks allows to reach good dielectric constants while retaining high breakthrough voltage and low leakage currents. The work should focus on the study of the influence of the production process and the forming of stacks while examining the phenomena that cause leakages.

 Smart Nanodevices

Supervisor: Jaromír Hubálek, Ph.D.


Study of fluorescence impact on conductance in semiconducting nanostructures

The electron interaction of nanostructures with the environment is known and is described by several phenomena. An important phenomenon is the significant effect of nanostructure properties, where the density of energy is quantised. Photon excitation is also possible in case of semiconductors due to internal photoelectric effect. The effect of both phenomena can be observed on the change of the electrical conductivity of the material. When the nanostructure is covered with fluorescent material, both interactions occur unless the excitation occurs in the UV band. Fluorescence shifts the spectrum of excitation to the visible band, with changes in electron levels, which in turn directly affects the interaction with the nanomaterial on which the fluorescent material is bonded. The work will focus on the study of these interactions, their modelling and the practical measurement of the influence on the conductivity supplemented by testing in sensor applications.

 Smart Nanodevices

SupervisorJaromír Hubálek, Ph.D.


Study of electrical and sensing properties of semiconducting nanowires

Nanowires are a 1D structure where a quantum phenomenon is applied across the structure, which can significantly affect electrical properties compared to macrostructures. Interaction of nanowire with the environment, whether with gas molecules or bounded particles, affects electron density from surface to bulk. Temperature dependence of conductivity due to thermal excitation and eventual emissions may also differ greatly from assumptions. Experimental study of semiconducting materials such as some oxides or metal nitrides will need to be compared with available models and draw conclusions about the phenomena that play a role in electrical behaviour of nanowires.

► Smart Nanodevices

SupervisorJaromír Hubálek, Ph.D.


Method of perspiration rate measurement based on MEMS technology

The sweat perspiration rate is based on the measurement of the evaporation by differential measurement of humidity and temperature. This measurement is conditioned by sufficient distance between the measured points. In the case of a wearable device, its size must be very small, which significantly limits this condition. The research will focus on finding conditions, dependencies and shape of a MEMS-based measurement system to assure that the accuracy of the assay is as accurate as possible. The study of vapor-fluid systems and their modelling should result in the realization of the MEMS device.

 Smart Nanodevices

SupervisorJaromír Hubálek, Ph.D.


Nanotransportes of potential drugs based on coordination compounds 

Coordination compounds are very well known for their application in cancer therapy. As an example can serve cisplatin which is still used in medicine. Unfortunately, the cytostatics have a lot of side effects. To overcome them nanotransporters are applied, for example liposomes which can be further modified. The aim of the work will be preparation of such complexes and a study of their biological activity.

 Smart Nanodevices

SupervisorKopel Pavel, doc. RNDr., Ph.D.


Preparation of carbon quantum dots and their application for detection of  biomolecules and ions 

Quantum dots find their application in analytical chemistry as well as in biochemistry. Due to no toxicity more preferred are quantum dots based on carbon. There are many preparation ways and modifications of such quantum dots. The aim of the work will be preparation of carbon quantum dots, their modifications and application in practice.     

► Smart Nanodevices

SupervisorKopel Pavel, doc. RNDr., Ph.D.


Development and application of eucaryotic cell-based microcolumn separation techniques

The thesis will focus on development of new generation of electromigration capillary separation techniques by designing, preparation and testing of novel smart interactive phases for capillary electrophoresis or capillary electrochromatography. The designed phases will be based on living cells able to selectively transform target analyte from the complex sample to a detectable product. Manufacturing phase will be based on genetic modification technology enabling not only tailor the cell receptors towards the target analyte (to be extracted from the sample and internalized into the cell) but also modify the cellular pathway for a transformation of the analyte into the product and its release back into the capillary flow.

► Smart Nanodevices

SupervisorAdam Vojtěch, prof. RNDr., Ph.D.


Synthesis and modification of magnetic particles for isolation and analysis of microbial pathogens

This work is aimed at inorganic synthesis of magnetic nanoparticles, its surface modification, characterization and testing in the area of an isolation of target molecules for subsequent chemical analysis. Produced particles will be chemically modified for selective isolation of nucleic acid from bacteria. The whole procedure of the isolation will be firstly tested using common laboratory approach and subsequently will be integrated in fluidic device. This device will be than tested for processing of samples of pathogenic bacterial strains.

► Smart Nanodevices

SupervisorAdam Vojtěch, prof. RNDr., Ph.D.


CRISPR/Cas9 system to study of secondary metabolism of unicellular algae

The aim of this thesis is to investigate of secondary metabolism of unicellular algae using genome editing based on Crispr/Cas9 technology. The main goal will be the construction of knockout generation of Chlamydomonas reinhardtii strain in genes involved in biosynthesis of secondary metabolites. Subsequently, use the ambient mass spectrometry under ambient conditions with desorption electrospray ionization (DESI) and direct analysis in real time (DART) to study metabolome in the obtained strains. 

 Smart Nanodevices

SupervisorAdam Vojtěch, prof. RNDr., Ph.D.


Novel technology platforms for bioanalysis using magnetic nano- and microparticles

Nowadays, analytical techniques do not benefit only from expensive benchtop devices, which are suitable for laboratory use only. Technological progress enables to integrate several simple elements such as miniaturized electrodes, LED diodes, computers, and other necessary hardware platforms into simple and cheap bioanalytical devices. The key tool in this field seems to be fused deposition modelling based 3D printing and designed magnetic micro and nanoscale particles. Mentioned magnetic materials often possess spherical shape and surface modification suitable for selective target molecule isolation/preconcentration. The aim of dissertation is to design and fabricate portable device, which can be controlled by Bluetooth of cell phones. Student will acquire skills in the field of chemical analysis, 3D printing, magnetic materials synthesis, modification and characterization (SEM, TEM, FTIR, XPS, DLS…). The special attention will be paid the isolation of nucleic acids. Further, the student will acquire experience from prototype fabrication and its testing.

► Smart Nanodevices

Supervisor: Adam Vojtěch, prof. RNDr., Ph.D.


Advanced nanotools for a selective and efficient gene editing

Despite tremendous advances in recent years, gene editing has still its limitations. Among the most significant drawbacks, a selective delivery of the editing molecules to the target cells, markedly affecting the editing efficiency must be emphasized. Some tissues are very hard to edit, which also opens a new avenue for important discoveries in the field of advanced nanomaterials. Hence, the aim of this PhD project will be the use of variously modified hybrid organic/inorganic nanoparticles either static or dynamic as biocompatible delivery tools for gene editing molecules to increase the tissue/cell specificity and editing efficiency. In the first phase, developed nano-systems will be characterized and their efficiency will be tested on various immortalized and primary cell lines. In the second phase, with the focus on a deregulation of anti-apoptotic cascades, candidate delivery systems will be tested for biosafety, efficiency and specificity in vivoin pre-clinical murine model of breast cancer and selected monogenic hereditary disease. 

 Smart Nanodevices

Supervisor: Mgr. Zbyněk Heger, PhD.


Biophysical study of living cells

A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to study adhesion force between nanostructured surface and living cells. The student will set up a system of nanostructured pillars (substrates with those patterns are already available for the student) with desired surface properties. It is expected that the cells will attached to the top of the pillars and due to adhesion forces the cells will deform the pillars’ shapes. The student will capture a real-time video of the structure using either confocal or holographic microscope. The video will be processed by a script in MATLAB environment to create a real-time video of the adhesion force between the cell and the pillars. PhD candidate will work together with Regional Centre for Applied Molecular Oncology (RECAMO).

 Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Electrochemical detection of protein biomarkers with microfluidic chip

A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to perform theoretical study, design, fabrication and characterization of gold electrochemical sensors (EC) made by planar technology in combination with pulse electrochemical method, such as lock-in amplification. PhD candidate will perform detail analysis of electrode behavior and optimize their geometry. Besides that the student will design and fabricate a microfluidic system, which will allow to define the flow of liquid between individual electrochemical sensors. The lock-in amplification technique allows concurrently interrogate a few sensors. Basic characteristic will be perform using model Fe2+/Fe3+ system and compare with standard cyclic voltammetry. PhD candidate will then perform specific reaction antibody/antigen at the gold surface after the surface is treated with a thiol cross linker that there will be different antibody at each EC cell. PhD candidate will work together either with Regional Centre for Applied Molecular Oncology (RECAMO) or with partner group at Mendel University. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.

► Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Gecko mimicking structures

A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The project focuses on a development of a nanostructured materials for gecko mimicking surfaces. The key part of the work is to conduct finite element modelling (FEM) of the desired structure and to fabricate it primarily at CEITEC facility, as well as at National Institute of Standards and Technology, Gaithersburg, USA. Next the surface of the structure has to be treated to get desirable surface properties by self-assembly monolayer and characterize it using force spectrum (force-distance measurement) by atomic force microscope. Creation of a system to demonstrate utilization of the adhesion force is highly desirable. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.

 Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Label-free detection of protein biomarkers using ultrathin silicon sensors

A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. The goal of this work is to perform theoretical study, design, fabrication and characterization of nanosheet sensors made by an advanced planar technology in combination with pulse method, such as lock-in amplification. Goal of this work is to study, characterize and optimize an array of sensors made from ultrathin single crystal silicon (chips thickness of 10.5 nm can be used as resistive sensor connected as van den Pauw device or as Hall sensor to detect intensity of magnetic field. Change of charge at its surface will modulate its conductivity or magnetic particle its properties as Hall sensor. The device will be powered by a current pulses and the output will be process by a lock-in amplifier. PhD candidate will identify the system signal noise ratio and limit of detection (LOD) of the biosubstances of interest. He/she will also design and fabricate a simple microfluidic system to confine the tested sample at suitable location at the chip. There is also required to optimize the buffer solutions not to affect the measurement. PhD candidate will analyze the type of silane crosslinkers and their utilization using chemical vapor deposition technique. Basic properties will be conducted using albumin. Next the PhD candidate will perform specific reaction antibody - antigen of one biomarker and determines its LOD. PhD candidate will work together either with Regional Centre for Applied Molecular Oncology (RECAMO) as they have cancer’s biomarkers or with partner group at Mendel University. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.

► Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Monitoring of cell energy balance and mapping of cells’ internal temperature distribution

A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno, in collaboration with Institute of Biotechnology (IBT), Prague, Czech Republic. The project focuses on a development of a method to seed cells inside a calorimeter with an internal volume of ≈ 100 fl under an objective lens of a high power optical microscope. A considerable part of the project involves development of special methodology to grow cells in a calorimeter. The method will then be applied to monitor cellular energetic balance with respect to cell life cycle, such as mitosis, induction of apoptosis etc. This work will be primarily conducted in CEITEC, with a minor involvement of the IBT; part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.

 Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Smart skin

A PhD fellowship is available to conduct a project in the Central European Institute of Technology (CEITEC), Brno. Goal of this work is to perform theoretical study and characterize a nanostructured material which changes color based on the environment. The PhD candidate will first perform finite element modelling (FEM) to determine the physics origin of the structure behavior and fit the model on the actual structure. Then the available structures will be further studies using techniques such as near-field optical microscopy, atomic force microscopy and scanning electron microscopy. The PhD candidate will try to replicate the structure at CEITEC cleanroom or at National Institute of Standard and Technology (NIST), Gaithersburg, USA. This work will be primarily conducted in CEITEC. Part of the project might be also carried out in P.R. China, based on current exchange program and mutual agreement, i.e. it is NOT mandatory.

► Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Electrochemical properties of nanostructured materials 

Aim of this work is theoretical study, deposition and characterization nanostructured materials such as Au, Ag and their amalgams. Student is expected to optimize their deposition technique and characterize their properties, such as surface area and composition. Then the student will fabricate biosensing chip based on an array of those nanostructured materials and again perform their fundamental characterization using electrochemical, optical and electrical methods. Then the array of nanostructure electrodes in a microfluidic system will be used to perform an early cancer detection based on diagnosis of circulation cancer DNA. The chip fabrication, characterization will be conducted at CEITEC in collaboration with hospital laboratories, such as RECAMO.

 Smart Nanodevices

SupervisorNeužil Pavel, doc. Ing., Dr., DSc.


Calorimetric sensor for biocatalytic reaction and affinity interaction 

Calorimeters with pW resolution have a potential to monitor the thermodynamics of chemical and biochemical reactions at fL volume. A calorimeter made by microelectromechanical system (MEMS) technology with an integrated temperature sensor, surrounded by vacuum to improve its thermal isolation and precision will be fabricated and characterised. A unique properties of the system will be demonstrated by monitoring heat balance of biocatalytic and affinity reactions in solution. Thus, we are looking for highly motivated Ph.D. students with ability to carry out the research project independently, interpret the data and write manuscript. Background in microfabrication and characterisation techniques, and biosensing is strongly advantageous.

► Smart Nanodevices

SupervisorZdenka Fohlerová, Ph.D.


Engineered 2D materials for biosensing

The great success of graphene throws new light on discovering more two-dimensional (2D) layered nanomaterials that stem from atomically thin 2D sheets. Compared with a single element of graphene, emerging graphene-like 2D materials composed of multiple elements that possess more versatility, greater flexibility and better functionality with a wide range of potential applications. This project highlights unique morphology, biocompatibility and physicochemical properties of 2D materials with focus on their applications in electrochemical biosensing and optical biosensing. Thus, we are looking for highly motivated Ph.D. students with ability to carry out the research project independently, interpret the data and write manuscript.Background in 2D materials, microfabrication and characterisation techniques and biosensing is strongly advantageous.

 Smart Nanodevices

SupervisorZdenka Fohlerová, Ph.D.


RG 1-03 Experimental Biophotonics (Radim Chmelík)


Biophysical interpretation of quantitative phase image by means of coherence-controlled holographic microscopy and machine learning

The work will be dealing with the interpretation of the quantitative phase images gained by coherence-controlled holographic microscopy (CCHM). The possibilities for automated analysis of quantitative phase images by means of supervised and unsupervised machine learning will be investigated. The quantitative phase images enable extraction of valuable features characterizing the distribution of dry mass within the cell and hence provide important information about the live cell behaviour. The work would focus on refinement of the present automated classification of cells while employing the quantitative information from both the single-time-point and time-lapse quantitative phase images. The proposed methods will be tested on the images of live cells in order to estimate the applicability in the cancer cell biology.

 Experimental Biophotonics

SupervisorChmelík Radim, prof. RNDr., Ph.D.


New methods of control for holographic microscopy

Coherence-controlled holographic microscopy is focused on the observation of living cells in vitro. Long-term observation of living cells necessarily requires automated control of both microscope and experiment. The first goal is to design a new optical arrangement of a fully automated microscope, its mechanical design, and creation of the control software. Another goal is to propose methods for automation of biological experiments, implementing them into control software, and testing in real experiments. Requirements for applicants are optomechanical designer with basic knowledge of robotics.

► Experimental Biophotonics

Supervisor: Chmelík Radim, prof. RNDr., Ph.D.




Polarization multiplexing in correlation and holographic imaging 

Correlation and holographic imaging are techniques that allow either quantitative phase or three-dimensional image reconstruction from interference pattern. The doctoral thesis aims to implement new configurations for correlation and holographic imaging, where the light is multiplexed into orthogonal polarization states rather than divided into independent optical paths. Such systems are expected to improve existing and provide new imaging features, which are unavailable in up-to-date experiments. The required polarization states will be generated and modulated using the electro-optic effect in liquid crystal molecules or new generation optical components working on geometric phase.

► Experimental Biophotonics

Supervisor: Chmelík Radim, prof. RNDr., Ph.D.


Testing putative anti-cancer drugs using Holographic Incoherent Quantitative Phase Imaging (hiQPI)

Perform a screen with a set of putative drugs with potential effect on malignancy, particularly cell motility which is important for invasion and metastasis, with established cell lines derived from common aggressive carcinomas such as A549 (model for Non-Small Cell Lung Cancer). Cell motility will be measured using hiQPI with sub-confluent cell cultures. The project will include microscopy, image processing, data analysis and tissue culture.

Cancer invasion and metastasis is the major cause of mortality and morbidity in cancer patients. The main problems lie in accuracy of diagnosis and the choice of the most efficient treatment. Better utilisation of biopsy material is a promising candidate for improvement. This project focuses on development of a new procedure where the biopsy fragments from cancer patients will be subjected to time-lapse analysis of 3D cell motility based on 2-photon imaging featuring deep penetration. Motile behaviour of cells within the fragments will be quantitative analysed and statistical significance of changes induced by presence of potential chemotherapeutic agents will be evaluated thus indicating a suitable treatment for the relevant patients.  

 Experimental Biophotonics

SupervisorZicha Daniel, Ing., CSc.


Holographic Incoherent Quantitative Phase Imaging (hiQPI) in biomedical applications

Application of hiQPI for measurements of dynamic dry-mass distributions in live cancer cells in tissue culture including primary cells from patient biopsy. Development of relevant image processing and data analysis for quantitative evaluation of statistically significant changes in cellular responses to chemotherapeutic drugs using dynamic morphometric parameters derived by image processing. The project will include developments in microscopy, image processing, data analysis and tissue culture.

Quantitative analysis of changes in cell behaviour induced by replacement of genetic material using DNA microinjection in vitro. Statistical significance of changes in cell behaviour, such as speed of cell motility, will be evaluation using coherence controlled holographic microscopy and other methods for quantitative phase imaging. Dynamic morphometric parameters will be measured using computer image processing methods. The project will involve microscopy techniques, cell culture, capillary microinjection, computer image processing and data analysis.

 Experimental Biophotonics

SupervisorZicha Daniel, Ing., CSc.


Complex automated bioreactor for holographic microscopy

For maximum information yield about live cells behaviour provided by coherence controlled holographic microscopy it is inevitable to design and develop complex automated bioreactor. Such a device should ensure optically suitable accommodation of live cells in the microscope with provision of control over physiological microenvironment and preprogrammed challenges. The task is to design, develop and validate the complex automated biorector for T1 holographic microscope.

 Experimental Biophotonics

SupervisorVeselý Pavel, MUDr., CSc.


Rigorous simulation of electromagnetic wave propagation in inhomogeneous media 

The topic is focused on development of numerical methods for rigorous simulation of electromagnetic wave propagation in arbitrary inhomogeneous media. Namely, we assume investigation of the techniques based on the expansion into plane waves and/or eigenmodes in combination with perturbation techniques. Developed techniques will applied to modeling of light scattering by selected biological samples. Requirements: knowledge in fields of electrodynamics and optics corresponding to undergraduate courses, basic ability to write computer code, preferably in Matlab.

 Experimental Biophotonics

Supervisorprof. RNDr. Jiří Petráček, Dr.


1-04 Fabrication and Characterisation of Nanostructures (Tomáš Šikola)



Utilization of plasmonic nanostructures for local enhancement of magnetic components of electromagnetic fields  

The study will be aimed at design, fabrication, and characterization of resonant plasmonic nano- and micro-structures (“diabolo” antennas, split ring resonators, etc.)  providing a significant local enhancement of magnetic components of electromagnetic fields. The structures with resonant properties particularly in the  IR and THz will be studied,   with respect to their potential applications in relevant spectroscopic methods. 

 Fabrication and Characterisation of Nanostructures 

SupervisorŠikola Tomáš, prof. RNDr., CSc.


Transport properties of 2D Materials

The work will be devoted to a study of transport properties of 2D materials (graphene, transition metal dichalcogenides,….) modified by various layers of adsorbants. Emphasis will be put on in situ-measurements of these properties under well-defined UHV conditions and consequently to their utilization in sensing and other applications. 

Fabrication and Characterisation of Nanostructures 

SupervisorŠikola Tomáš, prof. RNDr., CSc.


Biosensors based on graphene and related 2D materials 

Classical biochemical tests in vitro are currently being replaced by bioelectronic sensors that excel in their speed, reusability and minimal dimensions. One of the most promising materials in this area is graphene, which has a high sensitivity to the presence of adsorbed molecules and is biocompatible at the same time. The subject of the doctoral thesis will be development and production of biosensors based on graphene and related two-dimensional materials. In the thesis, it will be necessary to master the general physical principles of sensors, problems of field-controlled transistors with an electrolytic gate and functionalization to achieve selective sensor response. A suitable applicant is a graduate of a Master's degree in Physical Engineering, Electrical Engineering or Biochemistry. Aims: Managing physical principles of biosensors, their theoretical and experimental aspects. Design and manufacture of a sensor based on a field-controlled transistor with an electrolytic gate. Functionalization of sensor for specific biological and chemical reaction. Sensor response testing on selected biological materials. Adequate publishing outputs and presentation of results at international conferences.

►  Fabrication and Characterisation of Nanostructures 

SupervisorŠikola Tomáš, prof. RNDr., CSc.


Application of KPFM in graphene based sensors and solar cells

Kelvin's probe force microscopy (KPFM) is an excellent tool for mapping the distribution of surface potential locally up to nanometer resolution. This can be advantageously used in a study of charge distribution on nanometer-sized sensors and at investigation of p-n interfaces of solar cells during their operation. This new information, in addition to commonly studied sensor current responses and solar cell voltage responses, makes it easier to understand the ongoing physical processes, use this knowledge to eliminate the shortcomings of existing devices, and possibly to design higher efficiency devices. At work, you will need to master the general physical principles of KPFM, sensors and solar cells. A suitable applicant is a graduate of a Master's degree in Physics, Electrical Engineering or Chemistry. Aims: 1) Mastering physical principles and measurement of graphene-based sensors and solar cells, 2) Adopting theoretical and practical aspects of KPFM, 3) Mapping the charge distribution close to a graphene sensor and designing more sophisticated sensors, 4) Mapping the potential distribution on the graphene-semiconductor solar cell interface and designing the cell with higher efficiency, 5) Adequate publishing outputs and presentation of results at international conferences.

  Fabrication and Characterisation of Nanostructures 

SupervisorŠikola Tomáš, prof. RNDr., CSc.


Modeling of functional properties of nanostructures for plasmonics

For detailed info please contact the supervisor.

  Fabrication and Characterisation of Nanostructures 

SupervisorKalousek Radek, doc. Ing., Ph. D. 


Tuneable magnetic materials based on heterostructures featuring a first-order magnetic phase transition

For detailed info please contact the supervisor.

►  Fabrication and Characterisation of Nanostructures 

SupervisorKalousek Radek, doc. Ing., Ph.D.


Fabrication of nanowire based devices for use in nanophotonics or bio-intefaces

Due to their geometry, one-dimensional materials seem to be natural building blocks for many device systems, e.g. in electronics or photonics. They can be easily and reproducibly contacted and allow to design 3D devices. Additionally, they seem to be natural choice for nanoscale electrodes (e.g. for detecting cells signalling) or for nanoscale-patterned macroscale electrodes (e.g. in electrochemistry). Currently, mostly undergraduates in our group deal with lithography, which is necessary for device design. We seek for a PhD candidate capable of fabricating a device geometry on demand, and aiming at performing measurements (electrical, optical) relevant for the device application (photonics, bio interfacing, sensing etc.).

  Fabrication and Characterisation of Nanostructures 

SupervisorKolíbal Miroslav, Ing., Ph.D.


In-situ monitoring of nanostructures growth

Revealing the growth mechanisms at nanoscale is particularly challenging from many reasons. The most prominent advances in physics of nanostructure growth were achieved utilizing real-time in-situ monitoring techniques (both microscopic and spectroscopic). In our group, we have a large expertise in real time electron microscopy and, in the following year, we will install a new vacuum chamber dedicated to Fourier transform Infrared spectroscopy. The aim of this PhD dissertation is to work on revealing puzzling growth modes of different nanostructures of interest (semiconductor nanowires grown by MBE, metallic/oxide threedimensional nanostructures formed by Focused Electron Beam Induced Deposition etc.) utilizing state-of-the-art equipment. Close collaboration with ThermoFisher Scientific R&D labs will be part of applicants work.

 Fabrication and Characterisation of Nanostructures 

SupervisorKolíbal Miroslav, Ing., Ph.D.


Fabrication of functional nanostructures and thein analysis by surface-sensitive techniques

Due to their geometry, one-dimensional materials seem to be natural building blocks for many device systems, e.g. in electronics or photonics. Because of high surface-to-volume ratio there is a need to analyze the properties of surfaces (ether electronic, morfology etc.) by surface-sensitive techniques. However, these often lack spatial resolution. The aim of the disseration work is to study the surfaces of relevant nanomaterials (with emphasis on quasi-1D semiconductors and oxides) and correlate them with projected functional properties (e.g. optical – fotoluminiscence etc.).

 Fabrication and Characterisation of Nanostructures 

SupervisorKolíbal Miroslav, Ing., Ph.D.


Plasmon enhanced photoluminiscence

In this study plasmonic resonant nano-and micro-structures (particles, antennas, tips) will be used for enhancement of photoluminescence of nanostructures such as nanodots, nanowires and 2D materials (e.g. metal dichalcogenides: MoS2, WS2,....). In this way single photon sources provided by defects of these structures might be recognized.  

►  Fabrication and Characterisation of Nanostructures 

SupervisorDub Petr, prof. RNDr., CSc.


 Utilization of surface analytical methods for the study of nanostructures

For detailed info please contact the supervisor.

  Fabrication and Characterisation of Nanostructures 

SupervisorDub Petr, prof. RNDr., CSc.


Time and space resolved dynamics of metamagnetic nanostructures across the phase transformation

The aim of the Ph.D. thesis is to obtain a profound understanding as well as active control of the dynamics of the phase transformation in materials featuring a first-order phase transition between antiferromagnetic and ferromagnetic states. This class of materials exhibits a metamagnetic behaviour in which the transition can be driven by several types of excitations, such as temperature, magnetic field, strain or laser pulses. The prototype material to perform this study will be the FeRh alloy. Recent studies suggest that its incorporation into meso- and nanoscale devices can result into emergent phenomena and new routes to stabilize and control the antiferromagnetic or the ferromagnetic state. The Ph.D. candidate will investigate the dynamics of the phase transition in patterned films driven by ultrafast current and laser pulses. The project will involve extending the existing scanning magnetooptical Kerr microscope to a pump-probe set-up and combining it with electrical transport measurements. Further steps will lead towards all-optical control of the magnetization in the ferromagnetic phase.

  Fabrication and Characterisation of Nanostructures 

Supervisor: Spousta Jiří, prof. RNDr., PhD.


R&D of high voltage and high power electric devices

The thesis will deal with the research and the development of new high voltage (> 600V) semiconductor devices (diodes and transistors) for High Performance Power Conversion (HPPC) and Motor Control (MC) applications in the automotive industry, renewable energy sources and transmission systems. These devices will be developed in collaboration with On Semiconductor company. The doctoral work will be focused on the development of new methods for diagnostics and analysis of defects of developed devices using instrumentation in CEITEC.

► Fabrication and Characterisation of Nanostructures 

SupervisorPrůša Stanislav, doc. Ing., Ph.D. 


RG 1-13 Molecular Nanostructures at Surfaces (Jan Čechal)


Long range ordered arrays of molecular quantum bits at surfaces   

Single molecular magnets (SMM) are molecular entities bearing nonzero magnetic moment. In addition to the magnetic properties SMM provide one important attribute: they represent two-state system that can be in superposition state, i.e., SMM represent quantum bits (qubits). Recent developments pushed the coherence properties of individual magnets to the range required for competitive qubits. However, for any future application the molecular qubits should be processable as thin films. Moreover, the individual qubits should be mutually interacting. The goal of PhD study is to prepare long-range ordered arrays of molecular qubits on solid surfaces a possible basis for a molecular quantum registry. The experimental research within the PhD study aims at the understanding of deposition/self-assembly phenomena of organic compounds containing magnetic atoms on metallic and graphene surfaces. A special focus will be given to graphene surfaces that provide means to control their electronic properties (by intercalation or external gate voltage) and, hence, mutual interaction of individual spins. The spin coherence properties will be investigated by cooperating partners at CEITEC and University of Stuttgart.

(For detailed information, please, directly contact the Jan Čechal)

►  Molecular Nanostructures at Surfaces

SupervisorČechal Jan, doc. Ing., Ph.D.


Deposition and functional properties of macro- and bio-molecules at surfaces

Large organic molecules (e.g. enzymes) present a prospective part of hybrid functional layers. However, deposition of large organic molecules under vacuum conditions presents an intriguing task as these cannot be thermally evaporated. Recently, in our laboratories, we got access to atomic injection system for deposition of soluble objects (e.g. molecules and nanoparticles) in ultrahigh vacuum. The goal of PhD is to develop methodology deposition of biomolecules and their characterization by microscopic and spectroscopic characterization. Within the Ph.D. study, deposited layers will be analyzed in-situ by the low energy electron microscopy (LEEM), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS). This will be complemented by ex-situ complementary characterization (in collaboration) by AFM, X-ray diffraction and reflectivity, and TEM.

 Molecular Nanostructures at Surfaces

SupervisorČechal Jan, doc. Ing., Ph.D.


Organic semiconductors on oxide electrode surfaces

Studies of model oxides with well-defined surfaces provide detailed information important for a understanding of adsorbate−oxide interactions. Indium oxide is the prototypical transparent contact material that is extensively used in a wide range of applications, most prominently in optoelectronic technologies especially if doped with tin; then is commonly referred to as indium tin oxide (ITO). The performance of an organic semiconductor devices is determined by the geometric alignment, orientation, and ordering of the organic molecules. Despite its technological importance, surprisingly little is known about the fundamental surface properties of and the organic semiconductor/ITO (In2O3) interface. The goal of PhD is to reveal the structure and morphology of organic semiconductors (para-hexaphenyl, pentacene, PTCDA) and describe kinetics of its growth by real-time LEEM.This will be complemented atomic/molecular scale investigation by STM/AFM and area integrated XRD and XPS. The PhD is a part of of our collaboration with TU Wien in the framework of SINNCE project. 

► Molecular Nanostructures at Surfaces

SupervisorČechal Jan, doc. Ing., Ph.D.


Remote graphene doping

The possibility to tune the graphene transport properties, i.e., type and concentration of charge carriers makes graphene an attractive candidate for electronic devices, sensors, and detectors. In this context, various approaches for providing graphene with controlled doping were developed. The original approach – application of an external electric field provided by the voltage between the graphene and a gate electrode – was followed by deposition of atoms or molecules featuring as charge donors or acceptors in direct contact with graphene. Remote graphene doping based on charge trapping in gate dielectric by visible-, UV-, and X-ray radiation was only recently established. In parallel, the effect of electron beam (e-beam) irradiation on graphene devices was evaluated and the e-beam also entered the group of techniques capable of providing graphene with remote doping. The goal of PhD is to reveal the mechanism of electron beam induced graphene doping, assess the role of defects in dielectric layer and develop a theoretical model describing the kinetics of the process. Our current understanding suggests that the key mechanism here is a charging of defects in an oxide dielectric layer and a p-/n- doping is achieved depending on possibility of formation of electron-hole pairs in the dielectric layer by electron irradiation. We envision the utilization of the project outputs in adaptive electronics and fabrication of graphene devices, in general.

 Molecular Nanostructures at Surfaces

SupervisorČechal Jan, doc. Ing., Ph.D.


RG 1-05 Development of Methods for Analysis and Measuring (Petr Klapetek)


Scanning probe microscopy based tomography

Scanning Probe Microscopy techniques (SPM) and particularly Atomic Force Microscopy (AFM) are most common techniques for surface topography measurements. They have however still some limitations, for example its limited scanning range and lack of techniques for sub-surface mapping. Even if the interaction between probe and sample is already including information from sample volume, typically only surface topography or surface related physical properties are evaluated and the sub-surface information is lost. In most of the scanning regimes the amount of recorded and stored data is even so small that the information about sample volume is lost. On the other hand, there is lack of reliable subsurface mapping techniques with high resolution suitable for the growing field of nanotechnology, and methods of SPM tomography have large potential – and we can already see some first attempts for sub-surface mapping in the scientific literature. Aim of the proposed work is to develop techniques for mapping volume sample composition using SPM, particularly based on AC Scanning Thermal Microscopy and conductive Atomic Force Microscopy. This includes development of special reference samples, methodology and software development for control of a special, large area, SPM. In cooperation with the research group also a numerical modeling of probe-sample interaction will be performed and methods for sub-surface reconstruction will be tested.

►  Development of Methods for Analysis and Measuring

SupervisorKlapetek Petr, Mgr., Ph.D.



RG 1-06 Materials Characterization and Advanced Coatings (Jozef Kaiser)


Lowering the detection limits of Laser-Induced Breakdown Spectroscopy (LIBS) technique via innovative approaches

Laser-Induced Breakdown Spectroscopy (LIBS) is a technique that utilizes high power-densities obtained by focusing the radiation from a pulsed laser to generate a luminous micro-plasma from an analyte in the focal region. The micro-plasma emission is subsequently analyzed by a spectrometer. The plasma composition is representative to the analyte's elemental composition. The topics of the dissertation work include the application of LIBS and its modifications for high-resolution elemental mapping of solid samples.

  Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Advanced laser ablation based analytical techniques for high resolutin mapping

For detailed info please contact the supervisor.

  Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Analysis using Laser-Induced Breakdown Spectroscopy (LIBS) method in vacuum

The aim of this dissertation thesis is the detection of elements with significant spectral lines in VUV region, such as C, N, S, P, Cl, and Br. This thesis will include necessary development and construction of detection system (including spectrometer and detector) designed for LIBS analysis with spectral range under 170 nm and resolution < 0.2 nm. It is desired that this detection system will be a modular extension of already developed LIBS interaction chamber, developed at CEITEC BUT. Consecutively, this system will be tested. Objectives: A) Literature research of current state of the art with respect to thesis goals, B) Design of the spectrometer and detection unit, C) construction of the detection system, D) Analysis in vacuum, E) Estimation of detection limits for selected elements

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Combination of spectroscopic and tomographic data to obtain 3D chemical imaging

Investigation of a sample gives only limited information when observed independently using different techniques. In order to improve the awareness of individual sample features it is beneficial to combine more techniques in a complementary analysis. We propose to provide chemical and structural analysis using laser-based spectroscopic and computed tomography techniques, respectively. Feasibility experiments shown a great potential in the combination of the Laser-Induced Breakdown Spectroscopy and micro X-Ray Computed Tomography techniques. In this work, the design of experiment has to be optimized to overcome obstacles in analysis given by both techniques. Another challenge lies in the processing and combination of obtained large scale data sets involving redundant and corrupted information. This thesis will build up a cornerstone of novel analytical approach.

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Dual-energy nano computed tomography

Dual-energy computed tomography (DECT) is a modality that was formerly used only at synchrotron based facilities. Recently it has been used in medical sphere of computed tomography (CT) and nowadays potential of DECT has been tested on laboratory based CT system with high resolution. This technique uses two energetically different X-ray spectra for examination and specific differentiation of individual sample components, in terms of materials or tissues, based on their attenuation properties. This differentiation is feasible even for materials which would be inseparable in CT data from standard CT measurement using only one beam energy. Therefore, an advantage of DECT is a possibility of precise material segmentation and classification. Furthermore, acquired information from DECT measurement can be utilized for creating pseudo-monochromatic CT images which results in specific reduction of tomographic artifacts e.g. beam hardening. Aim of this thesis will be study of DECT technique and testing its potential and utilization in sphere of laboratory CT system with submicron spatial resolution. 

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.



Analysis of muscle-skeletal system by X-ray computed tomography

X-ray computed tomography (CT) is a non-destructive imaging method that provides high spatial resolution at sub-micron level and it allows to obtain three-dimensional (3D) information about various objects with the size ranging from sub-millimeter to several millimeters. Recent developments of this method have significantly advanced biological imaging. Evaluation of 3D models provides information about shapes, scales and geometry of variuos biological objects (vertebrate muscles and skeletal elements). In this work, new approaches in CT data processing will be studied with the aim of explanation of different processes in developmental biology. 

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


 X-ray computed tomography in dimensional metrology

Non-destructive imaging method of X-ray computed tomography (CT) is very suitable for dimensional metrology. Through the development of standards it is also becoming accepted as a metrology tool. In comparison with conventional tactile and/or optical coordinate measuring machines (CMM), the CT advantage is analysis of outer and inner features of the sample. CT provides high information density and samples of any surface, shape or material can be measured (up to limit of density and thickness penetrable by X-rays). However CT measurement uncertainties caused by tomography artifacts or multimaterial samples still occur and reduce the measurement accuracy. The aim of this work is to develop practical solutions for CT measurement and the subsequent comparison of the proposed measument procedures with conventional methods of dimensinal metrology. 

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Evaluation of computed tomography data for biological structures analysis

Modern biology requires both qualitative and quantitative 3D information about the studied objects, which is not provided by conventional 2D imaging methods. In addition, the complexity of biological structures often requires a comprehensive approach to compare shapes, sizes and volumes. Application of 3D imaging method of X-ray computed tomography (CT) enables to visualise samples with a high-resolution, typically down to 1 μm3spatial voxel resolution. It allows to obtain 3D information about a large variety of tissues, including internal structures in the whole body context non-destructively. The most imprortant step in CT analysis is data processing. In this work, new approaches in CT data processing will be realised in the scope of biological sample analysis.  

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Investigation of spatial and temporal development of laser-induced plasmas

Laser ablation of matter is an essential process involved in the chemical analysis using various techniques of analytical chemistry. The spectroscopic investigation of characteristic plasma emission provides qualitative and quantitative information about the sample of interest. Standard analysis is based on the processing of emission signal; the process of laser ablation and consecutive development of laser-induced plasma is marginal and of little analytical interest. But, understanding the complexity of laser-matter interaction is a crucial step in the improvement of the latter data processing approaches. Thus, this work will target the investigation of spatial and temporal development of laser-induced plasmas, imaging of plasma plumes and determination of their thermodynamic properties. Outcomes of this work will be used in further advancement of the ablation of various materials (incl. biological tissues), improvement of optomechanical instrumentation (collection optics) and optimization of signal standardization.

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Dimensionality reduction of spectroscopic data

The amount of data obtained in one experiment is steadily increasing. Contemporary state-of-the-art Laser-Induced Breakdown Spectroscopy system provide bulky data sets with millions of objects (spectra) and thousands of variables (wavelengths). Thus, there is a must driven by more efficient data storage, handling and processing; this might be tackled by lowering the dimension of raw data sets. This demands to truncate the information and omit redundancy and noise. In this work, advanced mathematical algorithms will be investigated, with special attention to non-linear algorithms. The main parameter is robustness of the algorithm. Outcomes of this thesis will be directly applied to data processing in various applications, including the multivariate mapping of sample surface.

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Interconnection of statistical physics and machine learning algorithms

Spectroscopic analysis using state-of-the-art analytical techniques (incl. Laser-Induced Breakdown Spectroscopy, LIBS) results in big data; which in turn leads to challenges in data processing. Thus, in recent years, the attention in advanced algorithms for processing of large data sets is increasing. The interconnection of Machine Learning with Statistical Physics opens new perspective that might beneficially contribute to solution of contemporary bottle-necks in data processing; such as reducing the computation burden when handling overloading data sizes. Approaches and methods of Statistical Physics are bringing explanation and further improvement of complex Machine Learning models and their behaviour. Therefore, the goal of this thesis is the development of complex methodology for processing of spectroscopic data while taking into consideration the process of generation of data as such. 

 Materials Characterization and Advanced Coatings

SupervisorKaiser Jozef, prof. Ing., Ph.D.


Advanced design, development and evaluation of the next generation of thermal barrier coatings

Thermal barrier coatings (TBCs) are playing a significant role in advancing the efficiency of aircraft gas-turbine engines. These high-temperature ceramic coatings provide a high level of thermal protection for the underlying turbine substrate as well as extensive durability under severe environmental conditions. While the effect of TBCs towards the engines efficiency has been recognized in industry over the past decades, advanced research focused on extending the life and performance of TBCs is still necessary and mandatory. The doctoral thesis will be focused on the detailed research and advanced development of multilayer TBCs systems. In particular, the PhD candidate will be focused on investigating and evaluating systems which will be composed of rare-earth zirconates (LZ) with the general formula Ln2Zr2O7 (where Ln = rare-earth ions). The aim of this study will be, thus, the design, development, testing and evaluation of multilayer thermal barrier coating architectures with increased temperature capability (above 1300 oC) and increased protection against severe environments (e.g. CMAS attack) for aircraft gas-turbine engines to overcome todays’ limitations and reach todays’ energy and technology needs. Novel synthetic and characterization techniques currently used in the fields of chemical engineering and materials synthesis will be applied to study, develop and evaluate these advanced ceramic systems.

  Materials Characterization and Advanced Coatings

SupervisorMenelaou Melita, Dr., Ph.D.


Direct ink writing for fabrication of biological-tissue-like-constructs

This PhD research topic explores Direct Ink Writing method, also known as robocoasting, for in vitro fabrication of tissue-like-constructs with potential application as i) tissue or organ substitutes in tissue engineering and regenerative medicine approaches or ii) development of models for in vitro testing of drugs and new therapies. Direct ink writing is an additive manufacturing method able to produce polymeric, ceramic or metallic shapes, besides, it offer the possibility to use cell-loaded materials to fabricate directly cell-containing constructs. Along the studies, the candidate will have the opportunity to learn and work from the synthesis of the materials for manufacturing, to the biological characterization of the manufactured constructs. Principal attention will devote to fabrication of bone-like tissues, but according with the results, other tissues such as pancreas, muscle or neuronal will be addressed. Highly motivated and collaborative candidates with outstanding track of records and with the ambition to learn from both materials and biological sciences are welcome to submit an application.

  Materials Characterization and Advanced Coatings

Supervisor:  Montufar Jimenez Edgar Benjamin, Ing., Dr.


A new biomimetic method to attain hydroxyapatite-titanium composites without undesirable phases

This Ph.D. topic explores a new method for the development of titanium-hydroxyapatite composites and their characterization. Traditionally such composites have been processed by sinterization leading on oxidation of titanium and decomposition of hydroxyapatite. To overcome this problem a new biomimetic processing route will be implemented, that allow the in situ formation of hydroxyapatite at room temperature, following a process similar to the natural growing of bones. The aim is to produce titanium-hydroxyapatite composites free of secondary phases that combine the mechanical strength of titanium and the bioactivity of hydroxyapatite. The methodology include the chemical activation of titanium to promote the chemical bonding with hydroxyapatite, and in turn achieve mechanical reinforcement. Chemical, microstructural, interfacial and mechanical characterization will be performed to understand the behaviour of these new composites. Finally, titanium scaffolds will be manufactured by robocasting and reinforced with hydroxyapatite foam to obtain porous structures that promote bone regeneration in load bearing clinical situations. Along the studies, the candidate will have the opportunity to learn and work from the synthesis of the materials to the biological characterization of the composite. Highly motivated and collaborative candidates with outstanding track of records and with the ambition to learn from both materials and biological sciences are welcome to submit an application.

 Materials Characterization and Advanced Coatings

Supervisor:  Montufar Jimenez Edgar Benjamin, Ing., Dr.


Stability of plasma-sprayed thermal barrier coatings – The role of the bond coat roughness

The work aims at deeper understanding of stability of plasma-sprayed thermal barrier coatings (TBCs) as affected by the roughness of MCrAlY bond coat. Damage mechanisms and damage evolution in TBCs will be examined to identify the optimal topography of the bond coat in order to improve coating performance for components used in propulsion and power generation industries. Conventional MCrAlY + ZrO2-Y2O3 TBCs with the bond coat prepared by high-velocity oxyfuel spray and plasma spraying using feedstock powders with different size-distribution will be studied under high-temperature isothermal oxidation, thermal cycling, and room temperature mechanical loading.

  Materials Characterization and Advanced Coatings

Supervisor:  Slámečka Karel, Ing., Ph.D.


Increase of a dielectric constant of ceramic materials for application in capacitors

High permittivity materials are needed for new applications, eg. in the next generation integrated circuits or in capacitors. In the manufacture of capacitors, materials with high permittivity are desirable to achieve a higher density of energy in the capacitor and hence to diminish the dimensions. Nowadays, pure BaTiO3material is used for commercial ceramic capacitors. By doping the permittivity of this material can be increased up to 10 times. The aim is to find options for BaTiO3 to increase the permittivity in the form of doping or material modification. Internship at the University of Oulu is planned.

►  Materials Characterization and Advanced Coatings

SupervisorSedláková Vlasta, doc. Ing., Ph.D.


Charge transport and its fluctuation at electrode/electrolyte interface

Due to stochastic nature of the matter, physical processes in materials are considered to be stochastic, and they reveal as fluctuation of measurable quantities macroscopically. Not only in sensorsics, these fluctuations are usually called noise, since they are assumed to be unwanted and distracting components, which do not carry any information. The aim is study of chargé transport and fluctuation mechanisms at electrode/electrolyte interface. Practical results lay in development of physical and electrical models on the basis of experimental study of amperometric gas sensors.

  Materials Characterization and Advanced Coatings

SupervisorSedlák Petr, doc. Ing., Ph.D.



1-12 Magneto-Optical and THz Spectroscopy (Petr Neugebauer)


Design of multipurpose sample holder for ThZ Spectroscopy 


Design of Multipurpose Sample Holder for THz Spectroscopy 

The aim of this PhD project is to develop multipurpose non-resonant sample holder for broadband Electron Paramagnetic Resonance spectrometer based on THz rapid frequency scans (THz-FRaScan-EPR) as well as for Fourier Transform InfraRed (FTIR) studies. Thanks to the developed sample holder the THz-FRaScan-EPR spectrometer will allow multi-frequency relaxation studies of variety of samples ranging from oriented bulk (crystal) materials, over powdered samples to air sensitive samples and liquid solutions. Furthermore, the design should allow inserting samples from Ultra High Vacuum. The sample holder should primary operate at frequencies between 80 GHz to 1100 GHz, at temperatures from 1.8 K to 300 K and at magnetic field up to 16 T. The sample holder will be tested on variety of samples ranging from Single Molecule Magnets over modern 2D solid state materials to air sensitive biological samples.

 Magneto-Optical and THz Spectroscopy

SupervisorNeugebauer Petr, Ing., Ph.D.


Development of computational procedures and computer programs for processing pulsed EPR data

Pulsed Electron Paramagnetic Resonance (EPR) methods are intensively used to investigated structure and dynamics of complex macromolecules containing unpaired electrons. Among these methods Pulsed Electron-Electron Double Resonance (PELDOR) also known as Double Electron-Electron Resonance (DEER) has emerged as a powerful technique to determine relative orientation and distance between macromolecular structural units on nanometre scale. For successful applications of pulsed EPR methods it is important to have tools enabling transformation of measured signals into structural information. The goal of this PhD project is to develop new effective computational procedures and computer programs for the processing of measured pulsed EPR data in order to extract structural and dynamical information from experiments. This goal also includes application of the developed computational methods to real experimental data obtained on the molecules tagged with spin labels. For more details please contact Petr Neugebauer.

 Magneto-Optical and THz Spectroscopy

SupervisorNeugebauer Petr, Ing., Ph.D.


Development of a 500 MHz DNP-NMR system

The introduction of pulse techniques to the nuclear magnetic resonance (NMR) spectroscopy had dramatically enhanced its sensitivity, which, in turn, had changed its application landscape. For example, it gave birth to the magnetic resonance imaging (MRI) — a revolutionary and (nowadays) indispensable tool in medical diagnosis and staging of disease. The further increase in sensitivity will improve the resolution and recording time of MRI scans, making it cheaper and more accessible. The most promising path in this direction is the so-called dynamic nuclear polarization(DNP) enhanced NMR. In this method, the much higher polarization of the electron’s spin is transferred to the nuclear spin via hyperpolarizationprocesses. This technique has already proven its usefulness demonstrating the hundreds of times improvement of the sensitivity. The main goal of the project is to increase further the efficiency of DNP-NMR, and it consists of two parts. Firstly, we will couple the existing 500 MHz NMR console with our 16 T superconductive magnet in order to be able to run solid-state NMR. For this goal, the PhD student will design and develop the DNP-NMR probe for solid-statesamples. The second part is devoted to experiments on the DNP enhanced NMR and improving the efficiency of hyperpolarizationprocesses.

► Magneto-Optical and THz Spectroscopy

SupervisorNeugebauer Petr, Ing., Ph.D.


Investigation of quantum phase transitions via Electron Spin Resonance

Magnetism emerges in matter due to the presence of unpaired electronic spins and the interaction between them in a wide range of materials from oxides to molecular materials. The collective behavior of spins, also known as quantum entanglement of spins, is a very active area of research with application to communication and computation. Electron spin resonance (ESR) is a key technique that enables to investigate spin states and spin-spin interactions. It has been successfully applied to monomeric and dimeric spin systems for identifying quantum transitions between entangled phases by varying parameters such as the temperature or the orientation of an external applied magnetic field. The aim of this project is to identify suitable materials such as spin dimers of molecular nature and apply ESR spectroscopy to study quantum phase transitions in the high frequency (up to 1 THz) and high field (up to 16 T) regime.

 Magneto-Optical and THz Spectroscopy

SupervisorNeugebauer Petr, Ing., Ph.D.


Magnetic switchable systems based on metal complexes

Switchable systems based on metal complexes able to change magnetic properties are highly attractive for sensor applications, new electronic devices, or active smart surfaces usable in materials providing high-density data storage. For these applications, the magnetic activity of metal complexes can be utilized and furthermore, it can be modulated by modification of their coordination, redox, electronic and ligand field properties. Three ways to obtain such function are to vary the ligand field strength, switching the coordination chemistry or switching the degree of coupling between two spin metal ions in the case of polynuclear compounds. The aim of the project is to synthesize bi- or multistable metal complexes incorporating switch regulation site in order to perform controlled spin change. Our systems will be characterized by different physical techniques: high field and frequency EPR and NMR spectroscopy, Mass spectrometry, SQUID and X-Ray crystallography.

 Magneto-Optical and THz Spectroscopy

SupervisorNeugebauer Petr, Ing., Ph.D.


Coordination compounds showing the magnetic bi- or multistability

Proposed PhD project is oriented on the synthesis and characterization of magnetically active transition metal and/or lanthanide complexes showing specific magnetic phenomena like spin crossover effect, single molecule magnetism or single chain magnetism. Such coordination compounds exhibit magnetic bi- or multistability and in this sense are very attractive from the application point of view. Possible technological utilization might be in the case of high capacity memory devices, display technologies, spinotronics, contrast agents for magnetic resonance imaging etc. PhD study will be focused on the advance organic and coordination synthesis of mononuclear and polynuclear complexes. New-prepared compounds will be characterized by analytical and spectral methods and magnetic properties will be studied by means MPMS SQUID and HFEPR spectroscopy.

 Magneto-Optical and THz Spectroscopy

Supervisordoc. Ing. Ivan Šalitroš, Ph.D.



RG 1-15 Functional Layers and Nanostructures (Hermann Detz)


Fabrication and Structural Characterization of Novel Plasmonic Materials 

Plasmonic waveguides were demonstrated to be an ideal component of monolithic infrared sensing platforms. While at present, they are commonly used for the confinement and guidance of optical modes, they offer a lot of potential to make a transition from purely passive to functional components of optical systems. The candidate should investigate the fabrication of Heusler-compounds for plasmonics applications at near- and mid-infrared wavelengths by UHV sputtering processes. Experimental work will include the nucleation and growth in different semiconductor surfaces as well as the structural characterization of these materials by X-ray diffraction and transmission electron microscopy. Previous experience with relevant equipment within the CEITEC Nano Facilities (UHV sputtering, XRD, TEM) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.). The group of Dr. Hermann Detz focuses on hybrid plasmonic systems for applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences.

 Functional Layers and Nanostructures

SupervisorDetz Hermann, Dr.


Electronic and Optical Characterization of Novel Plasmonic Materials 

Plasmon propagation in metals and metallic compounds provides an ideal foundation for strong interaction between an optical mode and an electronic system. The functionality of plasmonic layers can be extended far beyond simple waveguide applications, e.g. by structuring into meta-surfaces. This thesis will be focused on the development of functional plasmonic surfaces and their interaction with semiconductor heterostructures. The candidate is expected to characterize the electrical and optical properties of novel plasmonic materials to pave the road for device integration with monolithic mid-infrared sensors. Previous experience with measurement setups at CEITEC (i.e. probe station, cryostats, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.). The group of Dr. Hermann Detz focuses on hybrid plasmonic systems for applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences. the electrical and optical properties of novel plasmonic materials to pave the road for device integration with monolithic mid-infrared sensors. Previous experience with measurement setups at CEITEC (i.e. probe station, cryostats, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.). The group of Dr. Hermann Detz focuses on hybrid plasmonic systems for applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences.

 Functional Layers and Nanostructures

SupervisorDetz Hermann, Dr.


Integration of Plasmonic Nanoparticles with Semiconductor-Heterostructures  

Plasmonic nanoparticles allow efficient coupling between optical fields and quantum-mechanical systems within semiconductor-heterostructures. The optical response of the nanoparticles depends on their shape and size and can therefore be engineered through lithographic processes. The main goal of this thesis will be to optimize the sputtering and structuring to realize well-defined geometries. The electronic and optical properties of hybrid systems (plasmonic particles + two-dimensional electron gas) shall be characterized to allow their application as beam-shaping elements for infrared sensing platforms. Previous experience with measurement setups at CEITEC (i.e. UHV sputtering, electron-beam lithography, laser lithography, ellipsometry) is of advantage. Applicants should be fluent in English and committed to self-motivated work in an international research group. Further relevant skills include utility programming for data analysis and lab automation (e.g. C++, Ruby, Python, Linux) as well as documentation and publication of results (LaTeX, etc.). The group of Dr. Hermann Detz focuses on hybrid plasmonic systems for applications in near- and mid-infrared sensing platforms. Particular emphasis is placed on the integration of novel plasmonic materials with established III-V optoelectronic devices. The group provides a multi-disciplinary, international environment. Scientific results are published in peer-reviewed journals and presented at international conferences.

 Functional Layers and Nanostructures

SupervisorDetz Hermann, Dr.


RG 1-17 Quantum Optical Technology (Andreas W. Schell)


Spectroscopy of novel quantum emitters 

During the last years, quantum optics has received growing attention (including Nobel Prices) for its ability to tailor quantum states in a highly controlled manner. Today, quantum optical systems start to emerge from the lab and start to be ready for real world applications. In this PhD project, novel solid-state quantum emitters are researched. The main tasks this involves are fabrication, optical characterization, e.g., with single photon spectroscopy, and the understanding of the properties of these emitters. For more detailed information please contact the supervisor.

 Quantum Optical Technology

SupervisorSchell Andreas Wolfgang, Dr.


Photonic structures for quantum optics  

During the last years, quantum optics has received growing attention (including Nobel Prices) for its ability to tailor quantum states in a highly controlled manner. Today, quantum optical systems start to emerge from the lab and start to be ready for real world applications. For these application it is necessary to be able to build quantum photonic elements. In this PhD project, photonic structures for such elements are designed, fabricated, and tested. For this, the underlying physics has to be understood, but also a hands-on approach in clean-room fabrication is required. For more detailed information please contact the supervisor.

 Quantum Optical Technology

SupervisorSchell Andreas Wolfgang, Dr.


Nanoassembly of quantum photonic elements  

During the last years, quantum optics has received growing attention (including Nobel Prices) for its ability to tailor quantum states in a highly controlled manner. Today, quantum optical systems start to emerge from the lab and start to be ready for real world applications. For these application it is necessary to be able to build quantum photonic elements. In this PhD project, this is done using the so-called hybrid approach, where those materials and nanoparticles are combined that can fulfil a specific task best. For this, the approach of nanoassembly is used, where either an electron microscope with manipulator an atomic force microscope is used to arrange specific configurations of nanoparticles and photonic structures. For more detailed information please contact the supervisor.

► Quantum Optical Technology

SupervisorSchell Andreas Wolfgang, Dr.


Optical investigation of nanosystems in a radio-frequency trap   

Using radio frequency traps, it is possible to study not only single ions decoupled from the environment – a technique that revolutionized physics – but also (larger) nanoparticles. Studying nanoparticles and their controlled interactions with light, electric fields, or other particles is of high interest in quantum optics and material science. In this PhD project, the student will develop the trap setup and the corresponding optical systems and thereafter use the setup to investigate the properties of nanoparticles decoupled from the environment. For more detailed information please contact the supervisor.

 Quantum Optical Technology

SupervisorSchell Andreas Wolfgang, Dr.


RG 1-18 Future Energy and Innovation (Martin Pumera)


2D materials for energy storage

This thesis will focus on the fabrication of new 2D materials on the basis of transition metal dichalcogenides for energy storage and supercapactitors.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.


2D materials for electrocatalysis and hydrogen generation as clean energy source

This thesis will focus on the fabrication of new 2D materials for electrocatalysis and water splitting to hydrogen as clean energy source. Hydrogen is being used as clean energy source for smart city electromobility.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.



2D materials for water treatment

This thesis will focus on the fabrication of new 2D materials for water treatment and purification.

► Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.


2D materials for biomedical analysis

This thesis will focus on the fabrication of new sensors and biosensors for biomedical applications based on detection of biomarkers based on graphene and other 2D materials.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.


3D printing for electrochemical sensors and biosensors for environmental protection

 This thesis will focus on the research and development of new 3D materials for electrochemical sensing and biosensing of important environmental pollutants.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.



3D printing for electrochemical energy storage

This thesis will focus on the research and development of new 3D printed materials for fabrication of supercapacitors.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.


Development of new materials for 3D printing of devices used in electrocatalytical water splitting for hydrogen evolution as a clean energy 

 This thesis will focus on the fabrication of new catalytic materials which are 3D printable for electrocatalysis and water splitting to hydrogen as clean energy source. Hydrogen is being used as clean energy source for smart city electromobility.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D


Advanced food analysis: Chemical functionalization of 2D materials with application for detection of dangerous polutants

This thesis will focus on the detection of mycotoxins in the food using DNA and immunoassays modified 2D materials.

 Future Energy and Innovation

SupervisorRNDr. Martin Pumera, Ph.D.


SUBMIT YOUR APPLICATION FOR ADVANCED NANOTECHNOLOGIES AND MICROTECHNOLOGIES PROGRAM HERE